Understanding the Chemistry Dozen
Imagine trying to count out individual atoms to make water. You'd need:
That's... completely impossible. So chemists invented the mole - think of it as the "chemistry dozen."
1 mole = exactly 6.02 × 10²³ particles
This special number is called Avogadro's Number (NA)
(what you can weigh)
(the bridge)
(atoms/molecules)
Grams → Moles: Divide by molar mass
Moles → Grams: Multiply by molar mass
Moles → Particles: Multiply by 6.02 × 10²³
Particles → Moles: Divide by 6.02 × 10²³
Molar mass is the mass (in grams) of exactly 1 mole of a substance. Units: g/mol
For elements: Look at the periodic table! The number below the symbol is the molar mass.
For compounds: Add up the molar masses of all atoms in the formula.
Formula breakdown: 2 hydrogen atoms + 1 oxygen atom
Hydrogen: 2 atoms × 1.01 g/mol = 2.02 g/mol
Oxygen: 1 atom × 16.00 g/mol = 16.00 g/mol
Total: 2.02 + 16.00 = 18.02 g/mol
This means 1 mole of water weighs 18.02 grams!
Step 1: Break down the formula
The subscript "2" outside the parentheses means EVERYTHING inside is doubled:
Step 2: Calculate
Mg: 1 × 24.31 = 24.31 g/mol
H: 2 × 1.01 = 2.02 g/mol
C: 2 × 12.01 = 24.02 g/mol
O: 6 × 16.00 = 96.00 g/mol
Total: 146.35 g/mol
\[\text{moles} = \frac{\text{grams}}{\text{molar mass}}\]
\[\text{grams} = \text{moles} \times \text{molar mass}\]
Problem: How many moles are in 25.0 g of NaOH?
Step 1: Calculate molar mass of NaOH
Na: 22.99 g/mol, O: 16.00 g/mol, H: 1.01 g/mol
Molar mass = 22.99 + 16.00 + 1.01 = 40.00 g/mol
Step 2: Convert grams to moles
\[\text{moles} = \frac{25.0 \text{ g}}{40.00 \text{ g/mol}} = 0.625 \text{ mol}\]
Answer: 0.625 mol NaOH
Problem: What is the mass of 4.25 × 10⁻⁴ mol of H₂SO₄?
Step 1: Molar mass of H₂SO₄
H: 2 × 1.01 = 2.02
S: 1 × 32.07 = 32.07
O: 4 × 16.00 = 64.00
Total = 98.09 g/mol
Step 2: Convert
\[\text{grams} = 4.25 \times 10^{-4} \text{ mol} \times 98.09 \text{ g/mol} = 0.0417 \text{ g}\]
Answer: 0.0417 g or 41.7 mg
\[1 \text{ mol} = 6.02 \times 10^{23} \text{ particles}\]
\[\text{particles} = \text{moles} \times 6.02 \times 10^{23}\]
\[\text{moles} = \frac{\text{particles}}{6.02 \times 10^{23}}\]
Problem: How many molecules of sugar are in a 5-lb bag if the formula is C₁₂H₂₂O₁₁?
Step 1: Convert pounds to grams
\[5 \text{ lb} \times \frac{454 \text{ g}}{1 \text{ lb}} = 2270 \text{ g}\]
Step 2: Molar mass of C₁₂H₂₂O₁₁
C: 12 × 12.01 = 144.12
H: 22 × 1.01 = 22.22
O: 11 × 16.00 = 176.00
Total = 342.34 g/mol
Step 3: Grams → Moles
\[\frac{2270 \text{ g}}{342.34 \text{ g/mol}} = 6.63 \text{ mol}\]
Step 4: Moles → Molecules
\[6.63 \text{ mol} \times 6.02 \times 10^{23} \text{ molecules/mol} = 3.99 \times 10^{24} \text{ molecules}\]
Answer: 4.0 × 10²⁴ sugar molecules!
Problem: If a stack of 500 sheets of paper is 4.60 cm high, what will be the height, in meters, of a stack of Avogadro's number of sheets of paper?
Step 1: Height per sheet
\[\frac{4.60 \text{ cm}}{500 \text{ sheets}} = 0.0092 \text{ cm/sheet}\]
Step 2: Height of Avogadro's number of sheets
\[6.02 \times 10^{23} \text{ sheets} \times 0.0092 \text{ cm/sheet} = 5.54 \times 10^{21} \text{ cm}\]
Step 3: Convert to meters
\[5.54 \times 10^{21} \text{ cm} \times \frac{1 \text{ m}}{100 \text{ cm}} = 5.54 \times 10^{19} \text{ m}\]
Answer: 5.54 × 10¹⁹ m - That's about 587 light-years!
One molecule of H₂O contains 3 atoms (2 H + 1 O)
So 1 mole of H₂O contains:
Problem: Exactly 1 mol of carbon disulfide contains:
Formula: CS₂ (1 carbon, 2 sulfur per molecule)
Solutions:
a. 1 mol = 6.02 × 10²³ CS₂ molecules
b. 1 C per molecule × 6.02 × 10²³ = 6.02 × 10²³ C atoms
c. 2 S per molecule × 6.02 × 10²³ = 1.20 × 10²⁴ S atoms
d. 3 total atoms per molecule × 6.02 × 10²³ = 1.81 × 10²⁴ total atoms
Problem: How many atoms of oxygen are in 5.0 g of MnO₂?
Step 1: Molar mass of MnO₂
Mn: 54.94, O: 2 × 16.00 = 32.00
Total = 86.94 g/mol
Step 2: Grams → Moles
\[\frac{5.0 \text{ g}}{86.94 \text{ g/mol}} = 0.0575 \text{ mol MnO}_2\]
Step 3: Moles MnO₂ → Moles O atoms
Each MnO₂ has 2 O atoms, so:
\[0.0575 \text{ mol MnO}_2 \times \frac{2 \text{ mol O}}{1 \text{ mol MnO}_2} = 0.115 \text{ mol O}\]
Step 4: Moles O → Atoms O
\[0.115 \text{ mol} \times 6.02 \times 10^{23} = 6.92 \times 10^{22} \text{ O atoms}\]
Answer: 6.9 × 10²² oxygen atoms
| Conversion | Factor to Use |
|---|---|
| Grams → Moles | Divide by molar mass |
| Moles → Grams | Multiply by molar mass |
| Moles → Particles | Multiply by 6.02 × 10²³ |
| Particles → Moles | Divide by 6.02 × 10²³ |
| Grams → Particles | Go through moles (2 steps!) |