Unit Conversions: Study Guide Answers
Study Guide - Part 2 (One-Step Conversions)
Answers:
- \(8 \text{ ft} \times \frac{12 \text{ in}}{1 \text{ ft}} = 96 \text{ inches}\)
- \(144 \text{ in} \times \frac{1 \text{ ft}}{12 \text{ in}} = 12 \text{ feet}\)
- \(5 \text{ lb} \times \frac{16 \text{ oz}}{1 \text{ lb}} = 80 \text{ ounces}\)
- \(80 \text{ oz} \times \frac{1 \text{ lb}}{16 \text{ oz}} = 5 \text{ pounds}\)
- \(2.5 \text{ gal} \times \frac{4 \text{ qt}}{1 \text{ gal}} = 10 \text{ quarts}\)
- \(12 \text{ qt} \times \frac{1 \text{ gal}}{4 \text{ qt}} = 3 \text{ gallons}\)
- \(100 \text{ m} \times \frac{3.2808 \text{ ft}}{1 \text{ m}} = 328.08 \text{
feet}\)
- \(500 \text{ ft} \times \frac{1 \text{ m}}{3.2808 \text{ ft}} = 152.4 \text{
meters}\)
- \(3.5 \text{ kg} \times \frac{2.2046 \text{ lb}}{1 \text{ kg}} = 7.72 \text{
pounds}\)
- \(50 \text{ lb} \times \frac{1 \text{ kg}}{2.2046 \text{ lb}} = 22.7 \text{
kilograms}\)
Study Guide - Part 3 (Multi-Step Conversions)
Answers:
- \(2 \text{ mi} \times \frac{5280 \text{ ft}}{1 \text{ mi}} \times \frac{12 \text{
in}}{1 \text{
ft}} = 126{,}720 \text{ inches}\)
- \(50000 \text{ cm} \times \frac{1 \text{ in}}{2.54 \text{ cm}} \times \frac{1
\text{ ft}}{12
\text{ in}} \times \frac{1 \text{ mi}}{5280 \text{ ft}} = 0.311 \text{ miles}\)
- \(5 \text{ gal} \times \frac{4 \text{ qt}}{1 \text{ gal}} \times \frac{2 \text{
pt}}{1 \text{
qt}} \times \frac{2 \text{ cups}}{1 \text{ pt}} = 80 \text{ cups}\)
- \(128 \text{ fl oz} \times \frac{1 \text{ cup}}{8 \text{ fl oz}} \times \frac{1
\text{ pt}}{2
\text{ cups}} \times \frac{1 \text{ qt}}{2 \text{ pt}} \times \frac{1 \text{ gal}}{4 \text{ qt}}
= 1 \text{
gallon}\)
- \(5 \text{ lb} \times \frac{16 \text{ oz}}{1 \text{ lb}} \times \frac{28.35
\text{ g}}{1 \text{
oz}} = 2268 \text{ grams}\)
Study Guide - Part 4 (Squared and Cubed Conversions)
Answers:
- \(3 \text{ ft}^2 \times \frac{12 \text{ in}}{1 \text{ ft}} \times \frac{12 \text{
in}}{1 \text{
ft}} = 3 \times 12 \times 12 \text{ in}^2 = \) \(432 \text{ in}^2\)
- \(500 \text{ in}^2 \times \frac{1 \text{ ft}}{12 \text{ in}} \times \frac{1
\text{ ft}}{12 \text{
in}} = 500 \times \frac{1}{12} \times \frac{1}{12} \text{ ft}^2 = \) \(3.47 \text{
ft}^2\)
- \(2 \text{ yd}^2 \times \frac{3 \text{ ft}}{1 \text{ yd}} \times \frac{3 \text{
ft}}{1 \text{
yd}} = 2 \times 3 \times 3 \text{ ft}^2 = \) \(18 \text{ ft}^2\)
- \(5 \text{ m}^2 \times \frac{100 \text{ cm}}{1 \text{ m}} \times \frac{100 \text{
cm}}{1 \text{
m}} = 5 \times 100 \times 100 \text{ cm}^2 = \) \(50{,}000 \text{ cm}^2\)
- \(1 \text{ mi}^2 \times \frac{5280 \text{ ft}}{1 \text{ mi}} \times \frac{5280
\text{ ft}}{1
\text{ mi}} = 1 \times 5280 \times 5280 \text{ ft}^2 = \) \(27{,}878{,}400 \text{
ft}^2\)
- \(4 \text{ ft}^3 \times \frac{12 \text{ in}}{1 \text{ ft}} \times \frac{12 \text{
in}}{1 \text{
ft}} \times \frac{12 \text{ in}}{1 \text{ ft}} = 4 \times 12 \times 12 \times 12 \text{ in}^3 =
\)
\(6912 \text{ in}^3\)
- \(10000 \text{ cm}^3 \times \frac{1 \text{ m}}{100 \text{ cm}} \times \frac{1
\text{ m}}{100
\text{ cm}} \times \frac{1 \text{ m}}{100 \text{ cm}} = 10000 \times \frac{1}{100} \times
\frac{1}{100} \times
\frac{1}{100} \text{ m}^3 = \) \(0.01 \text{ m}^3\)
- \(0.5 \text{ yd}^3 \times \frac{3 \text{ ft}}{1 \text{ yd}} \times \frac{3 \text{
ft}}{1 \text{
yd}} \times \frac{3 \text{ ft}}{1 \text{ yd}} = 0.5 \times 3 \times 3 \times 3 \text{ ft}^3 = \)
\(13.5
\text{ ft}^3\)
- \(2.5 \text{ m}^3 \times \frac{100 \text{ cm}}{1 \text{ m}} \times \frac{100
\text{ cm}}{1 \text{
m}} \times \frac{100 \text{ cm}}{1 \text{ m}} = 2.5 \times 100 \times 100 \times 100 \text{
cm}^3 = \)
\(2{,}500{,}000 \text{ cm}^3\)
- \(1 \text{ in}^3 \times \frac{2.54 \text{ cm}}{1 \text{ in}} \times \frac{2.54
\text{ cm}}{1
\text{ in}} \times \frac{2.54 \text{ cm}}{1 \text{ in}} = 1 \times 2.54 \times 2.54 \times 2.54
\text{ cm}^3 =
\) \(16.39 \text{ cm}^3\)
Study Guide - Part 5 (Metric Conversions)
Answers:
- \(4.2 \text{ km} \times \frac{1000 \text{ m}}{1 \text{ km}} = 4200 \text{ m}\)
- \(850 \text{ cm} \times \frac{1 \text{ m}}{100 \text{ cm}} = 8.5 \text{ m}\)
- \(2500 \text{ mm} \times \frac{1 \text{ m}}{1000 \text{ mm}} = 2.5 \text{ m}\)
- \(6.8 \text{ kg} \times \frac{1000 \text{ g}}{1 \text{ kg}} = 6800 \text{ g}\)
- \(450 \text{ mg} \times \frac{1 \text{ g}}{1000 \text{ mg}} = 0.45 \text{ g}\)
- \(3.2 \text{ g} \times \frac{1000 \text{ mg}}{1 \text{ g}} = 3200 \text{ mg}\)
- \(2.5 \text{ L} \times \frac{1000 \text{ mL}}{1 \text{ L}} = 2500 \text{ mL}\)
- \(750 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}} = 0.75 \text{ L}\)
- \(5.6 \text{ cm} \times \frac{10 \text{ mm}}{1 \text{ cm}} = 56 \text{ mm}\)
- \(8500 \text{ g} \times \frac{1 \text{ kg}}{1000 \text{ g}} = 8.5 \text{ kg}\)
Study Guide - Part 6 (Derived Units)
Answers:
- \(45 \frac{\text{mi}}{\text{hr}} \times \frac{5280 \text{ ft}}{1 \text{ mi}}
\times \frac{1
\text{ hr}}{3600 \text{ s}} = 66 \frac{\text{ft}}{\text{s}}\)
- \(25 \frac{\text{m}}{\text{s}} \times \frac{3.2808 \text{ ft}}{1 \text{ m}}
\times \frac{1 \text{
mi}}{5280 \text{ ft}} \times \frac{3600 \text{ s}}{1 \text{ hr}} = 55.9 \text{ mph}\)
- \(8.0 \frac{\text{g}}{\text{cm}^3} \times \frac{1 \text{ kg}}{1000 \text{ g}}
\times \frac{1000
\text{ cm}^3}{1 \text{ L}} = 8.0 \frac{\text{kg}}{\text{L}}\)
- \(1.2 \frac{\text{kg}}{\text{L}} \times \frac{1000 \text{ g}}{1 \text{ kg}}
\times \frac{1 \text{
L}}{1000 \text{ mL}} = 1.2 \frac{\text{g}}{\text{mL}}\)
- \(88 \frac{\text{ft}}{\text{s}} \times \frac{1 \text{ mi}}{5280 \text{ ft}}
\times \frac{3600
\text{ s}}{1 \text{ hr}} = 60 \text{ mph}\)
Study Guide - Part 7 (Special Conversions)
Answers:
- \(350 \text{ cm}^3 \times \frac{1 \text{ mL}}{1 \text{ cm}^3} = 350 \text{ mL}\)
- \(2.5 \text{ L} \times \frac{1000 \text{ mL}}{1 \text{ L}} \times \frac{1 \text{
cm}^3}{1 \text{
mL}} = 2500 \text{ cm}^3\)
- \(500 \text{ mL water} \times \frac{1 \text{ g water}}{1 \text{ mL water}} = 500
\text{ g
water}\)
- \(750 \text{ g water} \times \frac{1 \text{ mL water}}{1 \text{ g water}} = 750
\text{ mL}\)
-
a) \(10 \text{ cm} \times 8 \text{ cm} \times 6 \text{ cm} = 480 \text{ cm}^3\)
b) \(480 \text{ cm}^3 \times \frac{1 \text{ mL}}{1 \text{ cm}^3} = 480 \text{ mL}\)
c) \(480 \text{ mL water} \times \frac{1 \text{ g water}}{1 \text{ mL water}} = 480 \text{ g
water}\)