PART 1: Understanding Reciprocals and Dimensional Analysis
What Are Reciprocals?
A reciprocal is just flipping a fraction upside down:
- The reciprocal of \(\frac{5}{3}\) is \(\frac{3}{5}\)
- The reciprocal of \(\frac{2.54 \text{ cm}}{1 \text{ inch}}\) is \(\frac{1 \text{ inch}}{2.54 \text{
cm}}\)
The Key Concept: Conversion Factors Work Both Ways!
If \(1 \text{ inch} = 2.54 \text{ cm}\), then we can write TWO conversion factors:
- Option A: \(\frac{2.54 \text{ cm}}{1 \text{ inch}}\)
- Option B: \(\frac{1 \text{ inch}}{2.54 \text{ cm}}\)
Both are valid! You choose which one makes your units cancel correctly.
The Dimensional Analysis Method (Factor-Label Method)
- STEP 1: Write what you're starting with
- STEP 2: Multiply by a conversion factor
- STEP 3: Choose the conversion factor so unwanted units cancel
- STEP 4: Calculate and check your units
Example: Convert 5 inches to centimeters
Given: \(1 \text{ inch} = 2.54 \text{ cm}\)
Setup:
\[5 \text{ inches} \times \frac{2.54 \text{ cm}}{1 \text{ inch}} = ?\]
Notice: "inches" cancels out!
\[5 \cancel{\text{inches}} \times \frac{2.54 \text{ cm}}{1 \cancel{\text{inch}}} =
12.7 \text{ cm}\]
Why this conversion factor? We needed inches on the bottom to cancel with inches on
top.
Counter-Example: Converting cm to inches
Convert 50 cm to inches
Setup:
\[50 \text{ cm} \times \frac{1 \text{ inch}}{2.54 \text{ cm}} = ?\]
Notice: Now we use the RECIPROCAL! "cm" cancels out!
\[50 \cancel{\text{cm}} \times \frac{1 \text{ inch}}{2.54 \cancel{\text{cm}}} =
19.7 \text{ inches}\]
PART 2: One-Step Conversions (Same Measure)
Your Conversion Factors Reference Sheet
LENGTH:
- 1 inch = 2.54 cm
- 1 foot = 12 inches
- 1 meter = 3.2808 feet
- 1 yard = 3 feet
- 1 mile = 5280 feet
- 1 mile = 1.609 km
VOLUME:
- 1 gallon = 3.785 liters
- 1 gallon = 4 quarts
- 1 pint = 2 cups
- 1 cup = 8 fluid ounces
- 1 fluid ounce = 29.575 mL
WEIGHT/MASS:
- 1 ounce = 28.35 grams
- 1 pound = 16 ounces
- 1 kilogram = 2.2046 pounds
PRESSURE:
- 1 atmosphere = 1013.25 millibars
- 1 atmosphere = 101.325 kilopascals
ENERGY/POWER:
- 1 calorie = 4.184 J
- 1 horsepower = 745.7 watts
Study Guide - Part 2 (One-Step Conversions)
Set up each conversion showing the conversion factor. Circle the units that cancel.
1. Convert 8 feet to inches
2. Convert 144 inches to feet
3. Convert 5 pounds to ounces
4. Convert 80 ounces to pounds
5. Convert 2.5 gallons to quarts
6. Convert 12 quarts to gallons
7. Convert 100 meters to feet
8. Convert 500 feet to meters
9. Convert 3.5 kilograms to pounds
10. Convert 50 pounds to kilograms
PART 3: Multi-Step Conversions (Same Measure)
Sometimes you need to use multiple conversion factors in a chain to get from one unit to
another.
Example: Convert 3 miles to centimeters
Available conversions:
- \(1 \text{ mile} = 5280 \text{ feet}\)
- \(1 \text{ foot} = 12 \text{ inches}\)
- \(1 \text{ inch} = 2.54 \text{ cm}\)
Setup (chain them together!):
\[3 \text{ miles} \times \frac{5280 \text{ ft}}{1 \text{ mile}} \times \frac{12
\text{ in}}{1 \text{ ft}} \times \frac{2.54 \text{ cm}}{1 \text{ in}}\]
Watch the units cancel:
\[3 \cancel{\text{miles}} \times \frac{5280 \cancel{\text{ft}}}{1
\cancel{\text{mile}}} \times \frac{12 \cancel{\text{in}}}{1 \cancel{\text{ft}}} \times \frac{2.54
\text{ cm}}{1 \cancel{\text{in}}} = 482{,}803.2 \text{ cm}\]
Pro Tip: Always Check Your Units!
Before you calculate:
- Cross out units that appear on both top and bottom
- Make sure only your target unit remains
- If units don't cancel correctly, flip one of your conversion factors!
Study Guide - Part 3 (Multi-Step Conversions)
Set up each conversion showing ALL conversion factors needed.
1. Convert 2 miles to inches (use: mile→feet→inches)
2. Convert 50,000 centimeters to miles (use: cm→inches→feet→miles)
3. Convert 5 gallons to cups (use: gallons→quarts→pints→cups)
Note: You'll need to figure out quarts→pints: 1 quart = 2 pints
4. Convert 128 fluid ounces to gallons (reverse the path from #3)
5. Convert 5 pounds to grams (use: pounds→ounces→grams)
PART 4: Squared and Cubed Unit Conversions (AREA AND VOLUME)
The Critical Rule: Use the Conversion Factor Multiple Times!
When converting area (square units) or volume (cubic units), you
need to apply the conversion factor ONCE FOR EACH DIMENSION.
Why? Let's Think About It
If \(1 \text{ foot} = 12 \text{ inches}\), then:
- \(1 \text{ ft}^2 \neq 12 \text{ in}^2\) ❌
- \(1 \text{ ft}^2 = 144 \text{ in}^2\) ✓
Think about it: A square that is \(1 \text{ ft} \times 1 \text{ ft}\) is actually \(12 \text{ in} \times
12 \text{ in} = 144 \text{ in}^2\)
We need to convert BOTH dimensions!
Area Conversions - The Long Form Method
Key Idea: Square units mean TWO dimensions (length × width). So we need to use our
conversion factor TWICE - once for each dimension!
Example: Convert 5 square feet to square inches
Given: \(1 \text{ foot} = 12 \text{ inches}\)
Step 1: Write out "square feet" as ft × ft
\[5 \text{ ft}^2 = 5 \text{ ft} \times \text{ft}\]
Step 2: Apply the conversion factor TWICE (once for each ft)
\[5 \text{ ft} \times \text{ft} \times \frac{12 \text{ in}}{1 \text{ ft}} \times
\frac{12 \text{ in}}{1 \text{ ft}}\]
Step 3: Cancel the units
\[5 \cancel{\text{ft}} \times \cancel{\text{ft}} \times \frac{12 \text{ in}}{1
\cancel{\text{ft}}} \times \frac{12 \text{ in}}{1 \cancel{\text{ft}}}\]
Step 4: What's left?
\[5 \times 12 \text{ in} \times 12 \text{ in} = 5 \times 144 \text{ in}^2 = 720
\text{ in}^2\]
Notice: Each "ft" in the original cancels with one "ft" in the denominator of a
conversion factor. That's why we needed the conversion factor TWICE!
Another Area Example: Convert 2 square yards to square feet
Given: \(1 \text{ yard} = 3 \text{ feet}\)
Step 1: Write it out long form
\[2 \text{ yd}^2 = 2 \text{ yd} \times \text{yd}\]
Step 2: Apply conversion factor twice
\[2 \text{ yd} \times \text{yd} \times \frac{3 \text{ ft}}{1 \text{ yd}} \times
\frac{3 \text{ ft}}{1 \text{ yd}}\]
Step 3: Cancel
\[2 \cancel{\text{yd}} \times \cancel{\text{yd}} \times \frac{3 \text{ ft}}{1
\cancel{\text{yd}}} \times \frac{3 \text{ ft}}{1 \cancel{\text{yd}}}\]
Step 4: Calculate
\[2 \times 3 \text{ ft} \times 3 \text{ ft} = 2 \times 9 \text{ ft}^2 = 18 \text{
ft}^2\]
Volume Conversions - The Long Form Method
Key Idea: Cubic units mean THREE dimensions (length × width × height). So we need to use
our conversion factor THREE TIMES - once for each dimension!
Example: Convert 2 cubic feet to cubic inches
Given: \(1 \text{ foot} = 12 \text{ inches}\)
Step 1: Write out "cubic feet" as ft × ft × ft
\[2 \text{ ft}^3 = 2 \text{ ft} \times \text{ft} \times \text{ft}\]
Step 2: Apply the conversion factor THREE TIMES (once for each ft)
\[2 \text{ ft} \times \text{ft} \times \text{ft} \times \frac{12 \text{ in}}{1
\text{ ft}} \times \frac{12 \text{ in}}{1 \text{ ft}} \times \frac{12 \text{ in}}{1 \text{ ft}}\]
Step 3: Cancel the units
\[2 \cancel{\text{ft}} \times \cancel{\text{ft}} \times \cancel{\text{ft}} \times
\frac{12 \text{ in}}{1 \cancel{\text{ft}}} \times \frac{12 \text{ in}}{1 \cancel{\text{ft}}} \times
\frac{12 \text{ in}}{1 \cancel{\text{ft}}}\]
Step 4: What's left?
\[2 \times 12 \text{ in} \times 12 \text{ in} \times 12 \text{ in} = 2 \times 1728
\text{ in}^3 = 3456 \text{ in}^3\]
Notice: Each "ft" cancels individually! We had three ft's, so we needed three
conversion factors.
Another Volume Example: Convert 0.5 cubic yards to cubic feet
Given: \(1 \text{ yard} = 3 \text{ feet}\)
Step 1: Write it out long form
\[0.5 \text{ yd}^3 = 0.5 \text{ yd} \times \text{yd} \times \text{yd}\]
Step 2: Apply conversion factor three times
\[0.5 \text{ yd} \times \text{yd} \times \text{yd} \times \frac{3 \text{ ft}}{1
\text{ yd}} \times \frac{3 \text{ ft}}{1 \text{ yd}} \times \frac{3 \text{ ft}}{1 \text{ yd}}\]
Step 3: Cancel
\[0.5 \cancel{\text{yd}} \times \cancel{\text{yd}} \times \cancel{\text{yd}} \times
\frac{3 \text{ ft}}{1 \cancel{\text{yd}}} \times \frac{3 \text{ ft}}{1 \cancel{\text{yd}}} \times
\frac{3 \text{ ft}}{1 \cancel{\text{yd}}}\]
Step 4: Calculate
\[0.5 \times 3 \text{ ft} \times 3 \text{ ft} \times 3 \text{ ft} = 0.5 \times 27
\text{ ft}^3 = 13.5 \text{ ft}^3\]
The Pattern You Should See:
- Linear units (ft): Use conversion factor ONCE
- Square units (ft × ft): Use conversion factor TWICE
- Cubic units (ft × ft × ft): Use conversion factor THREE TIMES
This is why people say "square the conversion factor" or "cube the conversion factor" - it's
shorthand for applying it multiple times!
Understanding the Numbers
When you apply conversion factors multiple times, you end up multiplying the numbers together. Here's
what you get:
AREA (Apply conversion factor TWICE):
- \(1 \text{ ft}^2\) becomes: \(12 \text{ in} \times 12 \text{ in} = \) \(144 \text{
in}^2\)
- \(1 \text{ yd}^2\) becomes: \(3 \text{ ft} \times 3 \text{ ft} = \) \(9 \text{
ft}^2\)
- \(1 \text{ m}^2\) becomes: \(100 \text{ cm} \times 100 \text{ cm} = \) \(10{,}000 \text{
cm}^2\)
- \(1 \text{ in}^2\) becomes: \(2.54 \text{ cm} \times 2.54 \text{ cm} = \) \(6.4516
\text{ cm}^2\)
VOLUME (Apply conversion factor THREE TIMES):
- \(1 \text{ ft}^3\) becomes: \(12 \text{ in} \times 12 \text{ in} \times 12 \text{ in} = \)
\(1728 \text{ in}^3\)
- \(1 \text{ yd}^3\) becomes: \(3 \text{ ft} \times 3 \text{ ft} \times 3 \text{ ft} = \)
\(27 \text{ ft}^3\)
- \(1 \text{ m}^3\) becomes: \(100 \text{ cm} \times 100 \text{ cm} \times 100 \text{ cm} = \)
\(1{,}000{,}000 \text{ cm}^3\)
- \(1 \text{ in}^3\) becomes: \(2.54 \text{ cm} \times 2.54 \text{ cm} \times 2.54 \text{ cm} = \)
\(16.387 \text{ cm}^3\)
Study Guide - Part 4 (Squared and Cubed Conversions)
Complete each conversion. Show your work using the long-form method!
AREA CONVERSIONS:
1. Convert 3 square feet to square inches
2. Convert 500 square inches to square feet
3. Convert 2 square yards to square feet
4. Convert 5 square meters to square centimeters
5. Convert 1 square mile to square feet (1 mile = 5280 feet)
VOLUME CONVERSIONS:
6. Convert 4 cubic feet to cubic inches
7. Convert 10,000 cubic centimeters to cubic meters
8. Convert 0.5 cubic yards to cubic feet
9. Convert 2.5 cubic meters to cubic centimeters
10. Convert 1 cubic inch to cubic centimeters (1 inch = 2.54 cm)
PART 6: Derived Units (Velocity and Density)
Derived units are combinations of base units. The two most common in chemistry are
velocity and density.
Velocity = Distance ÷ Time
Common units: miles/hour (mph), meters/second (m/s), kilometers/hour (km/h)
Example: Convert 60 miles/hour to meters/second
Strategy: Convert miles→meters AND hours→seconds
\[60 \frac{\text{miles}}{\text{hour}} \times \frac{1.609 \text{ km}}{1 \text{
mile}} \times \frac{1000 \text{ m}}{1 \text{ km}} \times \frac{1 \text{ hour}}{3600 \text{ s}} =
26.8 \frac{\text{m}}{\text{s}}\]
Notice: We need \(3600 \text{ seconds} = 1 \text{ hour}\) (\(60 \text{ min} \times
60 \text{ sec}\))
Density = Mass ÷ Volume
Common units: g/mL, g/cm³, kg/L, lb/gallon
Example: Convert 2.7 g/mL to kg/L
\[2.7 \frac{\text{g}}{\text{mL}} \times \frac{1 \text{ kg}}{1000 \text{ g}} \times
\frac{1000 \text{ mL}}{1 \text{ L}} = 2.7 \frac{\text{kg}}{\text{L}}\]
Notice: The mL and g conversions happen to cancel perfectly!
Study Guide - Part 6 (Derived Units)
Convert the following:
1. 45 miles/hour to feet/second (use: 1 mile = 5280 ft, 1 hour = 3600 seconds)
2. 25 meters/second to miles/hour
3. A density of 8.0 g/cm³ to kg/L (Remember: 1 cm³ = 1 mL)
4. A density of 1.2 kg/L to g/mL
5. 88 feet/second to miles/hour
PART 7: Special Conversion Factors
Special Factor #1: 1 cm³ = 1 mL
Why this is special: It connects a length-based unit (cubic
centimeters) to a volume unit (milliliters)!
Example: Convert 50 cm³ to liters
\[50 \text{ cm}^3 \times \frac{1 \text{ mL}}{1 \text{ cm}^3} \times \frac{1 \text{
L}}{1000 \text{ mL}} = 0.05 \text{ L}\]
This is incredibly useful when you calculate a volume using length measurements!
Special Factor #2: 1 mL of water = 1 g of water
Why this is special: It connects volume to mass (but
ONLY for water at standard conditions)!
Example: A container holds 250 mL of water. What is the mass?
\[250 \text{ mL water} \times \frac{1 \text{ g water}}{1 \text{ mL water}} = 250
\text{ g water}\]
CAUTION: This ONLY works for water! Different liquids have different densities.
Combining Both Special Factors
Example: A cube of ice is 5 cm × 5 cm × 5 cm. What is its volume in mL? If it melts, what is
the mass of water?
Step 1: Find volume in cm³
\[5 \text{ cm} \times 5 \text{ cm} \times 5 \text{ cm} = 125 \text{ cm}^3\]
Step 2: Convert to mL
\[125 \text{ cm}^3 \times \frac{1 \text{ mL}}{1 \text{ cm}^3} = 125 \text{ mL}\]
Step 3: Convert to grams (for water)
\[125 \text{ mL water} \times \frac{1 \text{ g water}}{1 \text{ mL water}} = 125
\text{ g water}\]
Study Guide - Part 7 (Special Conversions)
1. Convert 350 cm³ to mL
2. Convert 2.5 L to cm³
3. What is the mass of 500 mL of water?
4. If you have 750 g of water, what volume does it occupy in mL?
5. A rectangular container is 10 cm × 8 cm × 6 cm.
a) What is its volume in cm³?
b) What is its volume in mL?
c) If filled with water, what is the mass of the water?